

A REVIEW ON RUNOFF ESTIMATION OF VRISHABHAVATHI WATERSHED USING GIS

Md Ismail^{*1}, Sai Vinay G^{*2}, Owais Ahmed

Malik^{*3}, Nishanth S^{*4}

*1,2,3,4UGStudentsBE,DepartmentOfCivilEngineeringDSCE,Bengaluru, Karnataka,India.

ABSTRACT

In this project we came to know about various aspects of GIS (Geographical Information Systems). Geographic Co-ordinate system- Latitude and Longitude which is measured in degrees, minutes and seconds or decimal degrees. Different types of maps such as Digital Elevation model, contour, layout, continental network, soil and slope map. Toposheets- Coordinates, water bodies, streams, drainage network, road and railway network, settlement or habitation, contours, relative heights of bunds or river banks, legends, administrative boundary, topo index.Scale is the ratio of maps units to ground units. Watershed analysis includes division of water bodies such as region, basin, catchment, sub catchment, watershed, sub watershed, mini watershed, and micro watershed.

Geo referencing of topo sheets is the process of assigning real-world coordinates to each pixel of the raster.Morphometric analysis of the watershed includes quantitative analysis of size and shape. For example drainage networks, stream ordering, stream numbering, etc.

Keywords: Digital Elevation model(DEM), Toposheets, Runoff Estimation, Morphometric Analysis.

CHAPTER 1 INTRODUCTION TO GIS

1.1 Geographic Information System (GIS)

A Geographic Information System (GIS) is a system that creates, manages, analyzes and maps all types of data. GIS connects data to a map, integrating location data with all types of descriptive information. This provides a foundation for mapping and analysis that is used in science and almost every industry. GIS helps users understand patterns, relationships and geographic context. The benefits include improved communication and efficiency as well as better management and decision making.

1.2 Important aspects in GIS

Important aspects in Geographic Information System (GIS):

- ✤ Mapping
- ✤ Measurement
- ✤ Monitoring
- ✤ Model Making
- ✤ Management

1.3 Advantages of GIS

The following are the advantages of GIS:

- **Improved decision making** decisions can be made easilyas specific and detailed information can be presented about one or more locations.
- <u>Reduce costs and increase efficiency</u> cost reduction particularly with regard to maintaining schedule, fleet movement, schedule timetable as so on.

- <u>Improves incommunication</u> between any involved organizations or departments as the visual format is easily understood by all.
- <u>**Easy Record-Keeping</u>**Geographical changecan be easily recorded usingGIS by those who are responsible for recording such changes.</u>
- <u>Geographical Management</u>helps to know/ understand what is and/or will be occurring in a geographical space/area,& enable plan any course of action.

1.4 Disadvantages of GIS

The disadvantages of GIS are as follows :

- **High cost** Geographic Information System is a very expensive software, It requires enormous amount of date inputs to be practical for some tasks, It makes it prone for error, It has relative loss of resolution and it has violation of privacy.
- Availability in weaker areas–Geographic Information System signal needs to be found in remote areas, It is too heavily relied on, The geographic error is increased as you get into a larger scale as the earth is round, Funding for GIS is needed because it is more costly, there will be a loss of knowledge of geography.
- **Cause of Mistakes**–GIS layers cause some costly mistakes when the property agents are to interpret the GIS map or the design of the engineer around the utility lines of the GIS, The data availability is a major issue, If the data is not available, then the GIS system is useless.

- Accuracy–Another issue of analyzing the results from a GIS is that the results will only be as accurate as the data that they come from. So, the data may not be able to serve different contexts, particularly if the data is not applicable.
- **Complexity**–GIS systems are so complex , the technology behind GIS technology expands rapidly, causing GIS systems to have a high rate of obsolescence , As GIS is relatively new , integrating GIS data with traditional maps is difficult .

1.5 Functions of GIS

- Data Capturing and Storing
- Data Manipulation
- Querying
- Analysis
- Output
- Display

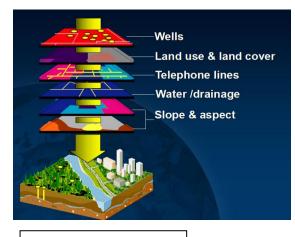


Fig 1: Layers used in GIS

CHAPTER 2 WATERSHED

2.1 Definition

- An area of land that drains or sheds water into a specific waterbody. It is a Hydrological Unit.
- It is a topographical delineated area drained by a stream system, from which Runoff is Resulted from one point to other point when precipitation is occurred.

2.2 Need of Watershed

Biological, physical, and chemical processes occurring within watersheds provide critical ecosystem functions and services that support plants and animals, including humans. Nutrient cycling, carbon storage, erosion control, soil formation, increased biodiversity, wildlife corridors, water storage, water filtration, flood controls, timber, and recreation are just a portion of the services provided by ecosystems within watersheds. For instance, riparian forests (forest habitat adjacent to streams) act as buffers to nonpoint source pollution and as corridors for animal foraging (Clipp& Anderson, 2014). The role of watersheds in nutrient cycling is important for stabilizing the environment at local and global scales (Allan & Castillo, 2007).

Forested headwater streams function to filter sediment and pollutants, which directly benefit humans and other animals in the form of clean water. At a larger scale, naturally vegetated floodplains provide storage and slow release of water. This benefit reduces the risk of flooding for anyone who lives near a river. Stable soils, an absence of pollutants, and a rich biological community are all

characteristics of a healthy watershed (USEPA, 2017). When watersheds are degraded and pollution ensues, ecological benefits and services can be reduced or completely lost.

Within watersheds, much of the water transported from high to low elevations is carried through streams and rivers. Because this water carries sediments and pollutants from the land area it drains, impairments in rivers and streams are indicators of unhealthy watersheds caused by upstream land use. The U.S. Environmental Protection Agency reported that 44 percent of the nation's rivers and streams and 64 percent of lakes, ponds, and reservoirs were impaired or not clean enough to support their designated uses (2009).

The National Water Quality Inventory: Report to Congress documented that the leading causes of impairment to rivers, streams, lakes, ponds, and reservoirs are pathogens, habitat alterations, and toxins and pollutants in the water. The main causes for these pollutants include agricultural activities, hydrologic modifications, atmospheric deposition, and other unknown or unspecified sources (USEPA, 2009). If water bodies can no longer support their designated or natural uses, the environment and/or humans will be negatively impacted.

Fig 2: Watershed

2.3 WATERSHED CATEGORIES

- REGION
- BASIN
- CATCHMENT
- SUB CATCHMENT
- WATERSHED
- SUB WATERSHED
- MINI WATERSHED
- MICRO WATERSHED

76°0'0"E 77°0'0"E 78°0'0"E CAUVERY BASIN MAP SHOWING RIVERS AND RESERVOIRS (KARANATAKA STATE) North Pennar Basin Krishna Basin CHIKBADLAPUR GALUR Palar Basin BANGALORE RURAL CHIKMAGALUR TUMKU South Basin 13°0'0"N 13°0'0"N HASSAN BANGALORE HASSAN AMANAGAR Cauvery Basin W F River Basin MANDYA KODAGU 12°0'0"N 12°0'0"N *HERALA* AMARAJA NAG Legen Large Dams DISTRICT HQ C-2 C-3 C-4 RIVERS RESERVOIRS C-6 Tanks C-8 TAMIL NADU RIVER BASIN Kilometers C-1 76°0'0"E 77°0'0"E 78°0'0"E

FIG 3:CAUVERY BASIN MAP SHOWING RIVERS & RESERVOIRS

• **REGION**

It is the natural distribution and movement of water in the entire water management. Example, Bay of Bengal Region.

• BASIN

Area drained by a river and its tributaries. Ex. Krishna Basin, Cauvery Basin.

• CATCHMENT

Area through which runoff joins the stream.

• SUB CATCHMENT

Division of catchment - A region of land where all surface runoff drains into a network of streams.

• WATERSHED

Area containing set of streams and rivers. Area of land that drains or sheds water into a specific water body

• SUB WATERSHED

Area containing set of stream tributaries within the watershed including mini watersheds and micro watersheds.

• MINI WATERSHED

Small hydrological unit consisting least number of water bodies and micro watersheds.

• MICRO WATERSHED

It is a small natural hydrological area which consists of rainfall runoff, small streams and drains joining a major stream.

2.4 Watershed Management

Every body of water (e.g., rivers, lakes, ponds, streams, and estuaries) has a watershed. The watershed is the area of land that drains or sheds water into a specific receiving waterbody, such as a lake or a river. As rainwater or melted snow runs downhill in the watershed, it collects and transports sediment and other materials and deposits them into the receiving waterbody.

Watershed management is a term used to describe the process of implementing land use practices and water management practices to protect and improve the quality of the water and other natural resources within a watershed by managing the use of those land and water resources in a comprehensive manner.

2.5Need of Watershed Management

- For Scientific management of Land and Water Resources.
- To know the balance Between Availability and Needs.
- To Regular monitoring to assess the status of development.

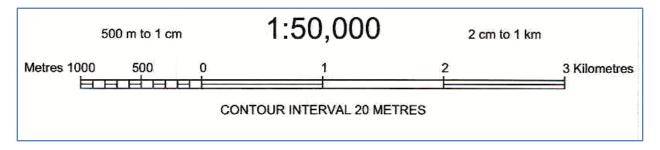
CHAPTER 3 Map Elements

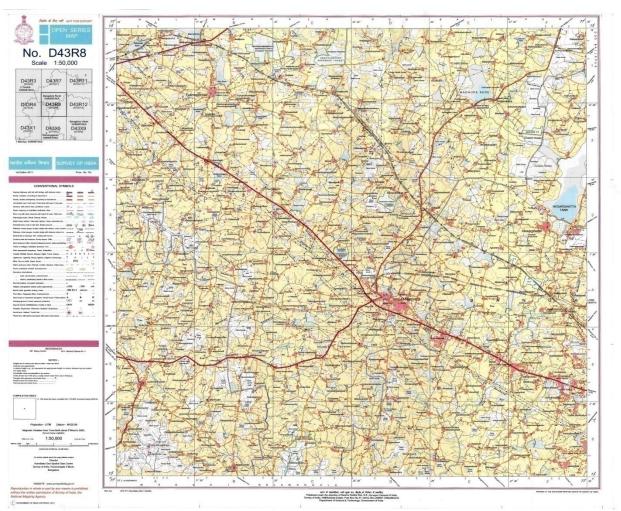
3.1 SCALE

It is the ratio of map units to ground units

- SCALE CONVERSION eg, 1:50,000 scale
- In 0.5 km how many cm are there
- 1 km = 1000 m
- 1 m = 100 cm
- 1 km=100000 cm
- 0.5 km =50,000 cm

1 cm on map = 50,000 cm on ground




Fig 4: Scale of toposheet

3.2 TOPOSHEET CONTENTS

- Co-ordinates
- Waterbodies, streams
- Road/railway network
- Settlements/habitations
- Contours
- Major land use
- Spot heights (RL)
- Power grid line
- Relative heights
- Legends (symbols)
- Admin boundaries
- Topo index

Fig 5: Toposheet

Co-ordinates

The map's edge contains the coordinate value for each grid line. Easting values can be read along the map's north or south edges, and northing values can be read along its east or west margins.

Eastings are the vertical lines that cross a topographical map in a topo sheet's grid structure. They are calculated eastward from the grid's starting point. Northings are the horizontal lines that cross a topographical map in a topo sheet's grid structure.

Waterbodies, streams

The topographical maps use the color blue to show water bodies like

perennial rivers, canals, well, tanks and springs.

Settlements/habitations

Development of town / city

Contours

Contours are the imaginary lines connecting equal elevations

Major land use

The landforms like mountains, hills, plateaus, peaks, ridges, agricultural land etc.

• Spot heights (RL)

A spot height is an exact point on a map with an elevation recorded beside it that represents its height above a given datum

Power grid line

It Includes power transmission lines, towers, etc.

Relative heights

A feature's relative height is its height in relation to the surrounding land's height, not to mean sea level. It is symbolised by a little 'r' in the height. Benchmark height is the height of a location that is really noted as a permanent reference on a stone pillar, rock or shown on a building.

Legends (symbols)

The map's legend provides a list of the symbols used and what they represent. These symbols must be described in detail in the legend and must appear exactly as they do in the map's main body.

Secondary highway, hard surface	
Light-duty road, hard or improved surface	
Unimproved road	
Trail	
Railroad: single track	
Railroad: multiple track	
Bridge	
Drawbridge	+-+• *• *+
Tunnel	
Footbridge	
Overpass—Underpass	
Power transmission line with located tower	1 8 9 4
Landmark line (labeled as to type)	TELEPHONE

Fig 6: Legend symbols

Admin boundaries

State boundary & District boundary

Topo index

Different scales are used to make these maps. The Survey of India has devised a numbering system in order to identify a map of a certain location. A base map with a size of 1: 1,000,000 is used for an international series (between 4° N to 40° N Latitude and 44° E to 124° E Longitude).

3.3 TYPES OF MAPS

1. DEM (Digital Elevation Model)

Is the topographical 3D projected map which shows elevations, ground undulations, excluding trees, buildings etc.

2. Contour Map

Is the topographical map consisting of various contours in the particular region with various elevations

3. Layout Map

Is the map showing the divisions or proposed division of land into plots etc.

4. Continental Map

Also called as world map showing all the 7 continents of the globe.

5. Network Map

It may be any network like – road or railway network, stream or water network.

6. Soil Map

It is the geographical representation showing different types of soil in particular area.

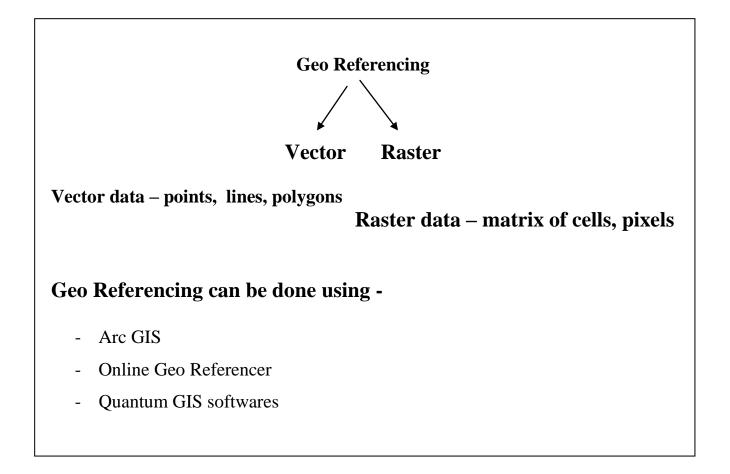
7. Slope Map

It is the two dimensional representation of the gradient of a surface.

3.4 DEGREES – CONVERSION TO DISTANCE

Circumference of the equator : 40,075 km

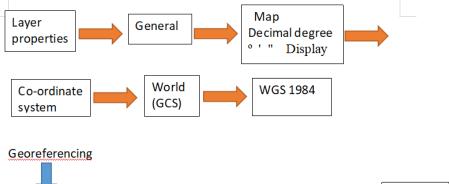
$1^{\circ} = 40075 / 360$	=	111.319 km)	
1' = 111.319 / 60	=	1.855 km	>	On ground
1" = 1.855 / 60	=	30.9 m	J	

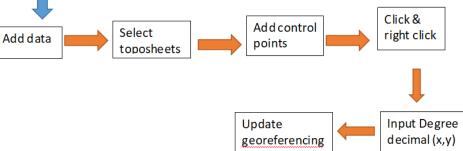


CHAPTER 4:GEOREFERENCING OF TOPOSHEETS

4.1 Georeferencing :

It is the process of inserting toposheets at the actual latitude and longitude of a certain location in the GIS platform and assigning real world coordinates to each pixel of the raster. A geographic coordinate system can be related to the internal coordinate system of a map or aerial photo image.


4.2 Types :



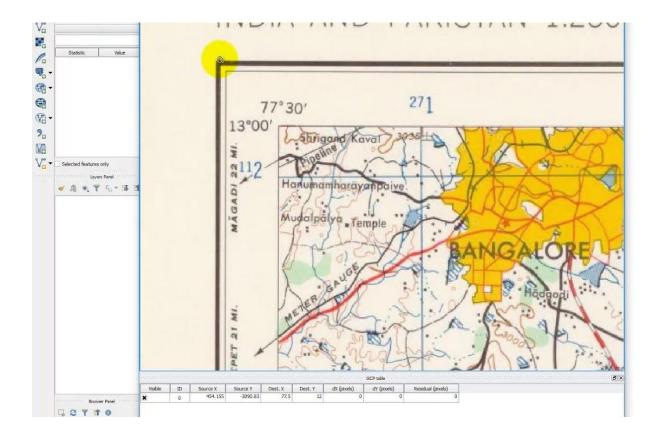


Fig 7: Georeferencing of toposheet

CHAPTER 5 : DIGITIZING THE STREAMS OF WATERSHED

5.1 :Digitizing

In a GIS, digitising is the process of turning geographic data into vector data by tracing the features from a hard copy or scanned image. Features from the traced map or image are recorded as coordinates in point, line, or polygon format throughout the digitising process.Digitization is a crucial technique for data and storage in <u>GIS Development</u>. The processof Digitization is expensive and time-consuming.

Digitization is converting hardcopy / scanned copy or satellite/Aerial base maps into vector data. Features are extracted from the existing maps or satellite images.

5.2: Types of Digitization

1. Manual Digitizing

Manual Digitizing is done by digitizing tablet. The digitizer manually traces all the lines from the hardcopy map (eg.Toposheet), and parallelly. The digital maps are created on the computer. It is only less time consuming but also has high accuracy when comparing with other digitizing methods.

2. Heads-up Digitizing

Heads-up Digitizing is similar to manual digitizing. In the manual digitizing process, it digitizes in hardcopy, but in this method, it scans the map directly and displays it on the desktop screen.

3. Interactive Tracing Method

The interactive tracing method is an advanced technique that has evolved from Heads-up digitizing. When it comes to speed and accuracy, it is fairly good.

4. Automatic Digitizing

Automatic Digitizing is the process of converting raster to vector in an automated method using pattern recognition and image processing techniques. In this technique, the computer traces all the features on the map; it gives high accuracy with low time consumption. It allows customization and improved quality of images. This process is also known as Vectorisation.

5.3 :Accuracy in the Digitization Process

In digitization World, important the an role is the accuracy of the digitized features. A good GIS database is entirely dependent on the Spatial accuracy of the features. But accuracy of the digitized map ultimately depends which in the digitization errors occur on process.

5.4: Types of Errors in Digitization

Errors on digitized maps are classified into the geodetic, machine, cartographic, manuscript, positional and attribute errors.

1. Geodetic Errors

Geodetic errors are due to the odd choice of a projection system. Generally, earth features are in 3 Dimensions. But the features on the map are in 2 Dimensions. So the projection system leads to inaccuracy. Improper projection leads to inaccurate placement of elements on the map. Therefore making the map and the digitized features do not overlap each other appropriately.

2. Machine Error

Machine error occurs due to the digitizing tablet or the software used to digitizing the elements. It is an inherent error that cannot be removed but can only be minimized. Sometimes it may occur when converting the maps from analog to the digital formats.

3. Cartographic Errors

Cartographic errors arise due to existing mistakes that are present in the source map itself, and it can be transferred into the digital map. Incorrect interpretations or drafting of the elements in the maps are also one of the reasons for these errors.

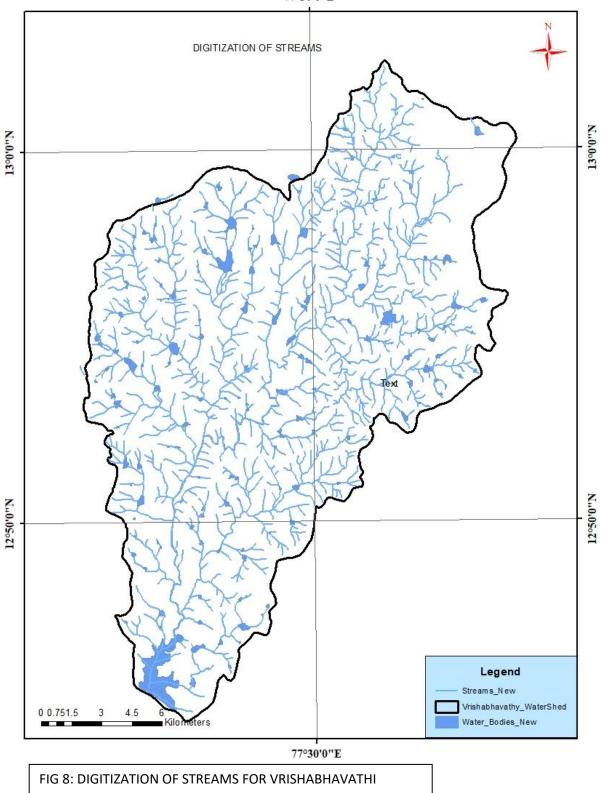
4. Manuscript Errors

Manuscript errors occur based on the quality of the source maps. Hard copy maps shrink with time. Any stretching, warping, wrinkling, or traces of folding of the original map might affect the digitization process. It may lead to irregular shape, area & coordinates of the digitized features. It can't be completely rectified.

5. Positional Errors

Positional Error happens when an element is not captured correctly or carelessness of the digitizer, and it can be completely rectified. Positional Error is categorized as Dangling Nodes, Switchbacks, knots, and loops, Overshoots, and Undershoots, Silvers, and Overlaps.

5.4: Digitization of Vrishabhavathi watershed



International Research Journal of Education and Technology Peer Reviewed Journal

ISSN 2581-7795

78°0'0"E 76°0'0"E 77°0'0"E CAUVERY BASIN (KARANATAKA STATE) CHIKBALLAPUR CHIKMAG ALUR BANGALORE RURA CHIKMAGALUR TUMKUR N..0.0.E N..0.0.21 NG AL ORE HASSAN VRISHABHAVATHI WATERSHED AMANAGA MAND MERCARA ODAGU SOR 12°0'0"N Legend 12°0'0'N *TERSIA* DISTRICT HQs. C-2 AMARAJA NAGA IVER BASIN RIVERS RESERVOIRS HAMRAJNAGAR ____ State Hig MDR 60 TAMIL NADU Railways Kilometers 76°0'0"E 77°0'0"E 78°0'0"E

FIG 9:LOCATION OF VRISHABHAVATHI WATERSHED ON CAUVERY BASIN MAP

CHAPTER 6 : MORPHOMETRIC ANALYSIS OF THE WATERSHED

6.1Abstract

Using a geographic information system (GIS), this study seeks to investigate the morphometric aspects of the Vrishabhavathi watershed. This analysis has demonstrated that there is a negative linear relationship between stream order (U) and stream number (Nu), which results in an increase in order with a decrease in the number of stream segments of a specific order. The watershed has a dendritic pattern of drainage, indicating high relief and steep ground slope with less elongated young and mature landforms in which geological structures don't have a dominant influence. Other morphometric parameters, such as stream length (Lu), bifurcation ratio (Rb), drainage density (D), stream frequency (Fs), texture ratio (T), elongation ratio (Re), circularity ratio (Rc), form factor ratio (Rf), relief ratio (Rh)

6.2 Introduction to Morphometric Analysis

It is the quantitative analysis of form, shape, a concept of size, etc. Quantitative description, analysis of landforms also called as geomorphology when referred to land.

6.3 DRAINAGE MORPHOMETRY

It is the measurement of any drainage basin's or watershed's linear, aerial, and relief properties. Our area of study is the Vrishabhavathi watershed. It contains information about drainage density, texture, stream frequency, form factor, circulatory ratio, and elongation ratio, among other things.

6.4 STUDY AREA

TheVrishabhavathi Watershed, Bangalore Urban, and Ramanagara District are all parts of theArkavathi River Basin, which has a 379.710km2 area with a tropical, seasonally dry climate. Boundary line is drawn by connecting ridge points and has a radius of 101.241 km. The river is 45.23 kilometres long. The watershed is 20.49 km wide and 33.47 kilometres long. The Big Bull temple in Basavanagudi and Dakshinamukha Nandi Theertha in Malleshwaram are its sources. Significant places include the agriculture research station Hebbal, Uttarahalli, Kengeri,

Tavarekere, Manchanabele, Bidadi, and Byramangala are included in the Vrishabhavathi watershed. Rainfall occurs from June through October.

Morphometric Parameters	Formula	References				
	Linear Aspects					
Stream Order (U)	Hierarchical order	Strahler,1952				
Stream Length (Lu)	Length of the stream	Horton, 1945				
Mean stream length	Lsm=Lu/Nu; Where, Lu=Mean stream length of a given	Horton, 1945				
(Lsm)	order (km), Nu=Number of stream segment.	H011011, 1943				
Stream length ratio	RL= Lu / Lu-1 Where, Lu= Total stream length of order (u),	Horton, 1945				
(RL)	Lu-1= Total Stream Length of its next lower order	H011011, 1943				
	Rb = Nu / Nu+1 Where, Nu=Number of stream segments,					
Bifurcation Ratio (Rb)	present in the given order, Nu+1= Number of segments of	Schumm, 1956				
	the next higher order					
Channel Sinuosity (S)	S=SL/Lb Where, SL= longest stream length , Lb= Basin	Schumm, 1956				
Channel Sindosity (S)	length	Schullin, 1950				
	Areal Aspects					
Drainage density (Dd)	Dd=L/A Where, L=Total length of stream, A= Area of	Horton, 1945				
Dramage density (Dd)	basin.	11011011, 1745				
Stream frequency (Fs)	Fs=N/A Where, L=Total number of streams, A=Area of	Horton, 1945				
Stream frequency (1's)	basin	11011011, 1945				
Texture ratio (T)	T=N1/P Where, N1=Total number of first order stream,	Horton, 1945				
	P=Perimeter of basin.	11011011, 1945				
Form factor (Rf)	Rf=A/(Lb) ² Where, A=Area of basin, Lb=Basin length	Horton, 1945				
Elongation ratio (Re)	Re= $\sqrt{(Au/\pi)}/$ Lb Where, A=Area of basin, π =3.14,	Schumm, 1956				
	Lb=Basin length					
Circulatory ratio (Rc)	Rc= 4π A/P ² Where A= Area of basin, π =3.14, P= Perimeter	Miller,1953				
	of basin.					
Length of overland	L=1/2Dd Where, Drainage density	Horton, 1945				
flow (L)						
Constant channel	C=1/Dd Where, Dd= Drainage density	Horton, 1945				
maintenance(C)		11011011, 15 10				
Relief Aspects						
Basin relief (Bh)	Vertical distance between the lowest and highest points of basin.	Schumm, 1956				
Relief Ratio (Rh)	Rh = Bh / Lb Where, $Bh=Basin$ relief, $Lb=Basin$ length	Schumm, 1956				
Ruggedness Number	Rn=Bh×Dd Where, Bh= Basin relief, Dd=Drainage density	Schumm, 1956				
(Rn)						

Table 1 MORPHOMETRIC PARAMETERS FORMULA

6.5: MORPHMETRIC ANALYSIS

SI					
no.	Morphometric parameter	Notation	Formula	Value	
1	Watershed area (Km ²)	А	-	379.710	
2	Watershed's Perimeter(Km)	Р	-	101.241	
3	Highest stream order	N	-	6	
4	Length of watershed (Km)	Lb	-	33.479	
5	Watershed's Max width (Km)	W	-	20.499	
6	Cumulative stream segment	ΣNu	-	798.000	
7	Cumulative stream length (Km)	ΣLu	-	708.449	
8	Longest stream length (Km)	SL	-	45.239	
9	Ratio of the Stream Length	RL	Lu/Lu-1		
10	Bifurcation Ratio	R _b	Nu/Nu+1		
11	Drainage Density	D _d	ΣLu/A	1.866	
12	Stream frequency	F	ΣNu/A	2.102	
13	Drainage Texture	Т	D _d X F	3.921	
14	Length of Overland flow	L	1/2D _d	0.268	
	Constant of Channel				
15	Maintenance	Cm	1/D _d	0.536	
16	Elongation ratio	R _e	(2 √A/π)/L _b	0.657	
17	Circulatory ratio	R _c	4 πA/P²	0.465	
18	Form Factor	R _f	A/Lb²	0.339	
19	Total Watershed relief ratio	н	Highest RL - Lowest RL	0.274	962.4 - 688.306 =274.094
20	Relief ratio	R _h	H / Lb	0.008	
20			H x Dd		
	Ruggedness Number	R _N		0.511	
22	Relative relief	R _r	H / P	0.003	
23	Compactness constant	C _c	0.2821 P/A ^{0.5}	1.466	19.4861
24	Channel sinuosity	S	SL / Lb	1.351	
25	Texture ratio	Tr	N1/P	5.946	

Table 2 MORPHOMETRIC PARAMETERS

6.6 Results and discussion

International Research Journal of Education and Technology Peer Reviewed Journal ISSN 2581-7795

A basin's properties are described by morphometric analysis, which uses quantitative evaluation of several criteria. The linear, areal, and relief dimensions of the parameters determine how they are distributed. Through their various impacts on lag time, morphometric characteristics like relief, shape, and length also have a significant impact on basin discharge patterns (Gregory and Walling, 1973). The drainage pattern is determined by how the streams are arranged in a drainage system, which in turn reflects the primary structural or lithologic restrictions of the subordinate rocks (Eesterbrooks, 1969). For studies of linear aspects, Horton (1945), Strahler (1952), and Schumm (1956) methods are used; for studies of areal aspects, Horton (1945), Miller (1953), and Schumm (1956) methods are used; and for studies of relief aspects, Schumm (1956) methods are employed. The subsequent computation and

6.7 Linear morphometric parameters

The information on one-dimensional parameters such as Stream Order, Stream Number, Bifurcation Ratio, Stream Length, and Channel Sinuosity is provided through linear aspects. This shows that the drainage network's channel patterns have the topological features of stream segments, and the study is based on the network's open linkages.

6.7.1 Stream order (U) & stream numbering

According to Leopold, Wolman, and Miller (1964), it is a measurement of where a stream falls in the hierarchy of tributaries. Due to its clarity, modified Horton's law (also known as the Strahler law) has been used for the analysis. First order refers to the smallest, unbranched fingertip streams. Second order channels result from the intersection of two first order channels, third order channels from the union of two second order channels, and so on. The higher-order is preserved while defining the stream order between two channels of different orders. The highest order in our

project is 6.The stream numbering and ordering approach developed by Strahler and Horton has been used.

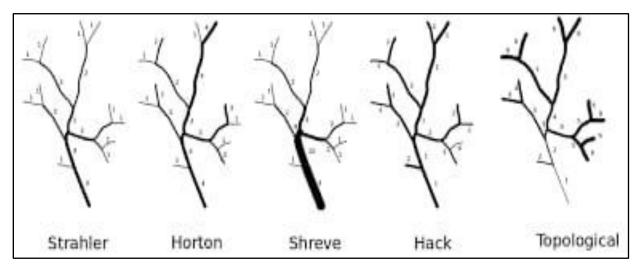
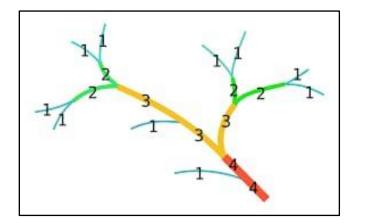



Fig 10 Strahler Horton stream ordering & numbering

When streams of the same order intersect, the stream order rises. As a result, when two first-order links intersect, a secondorder link results, when two second-order links intersect, a third-order link results, and so on.

The Horton approach is based on producing runoff when rainfall intensity exceeds the infiltration capacity and illustrates how infiltration capacity falls as the precipitation event progresses. Additionally, the recovery of infiltration capacity during dry times is described by the modified Horton's equation.

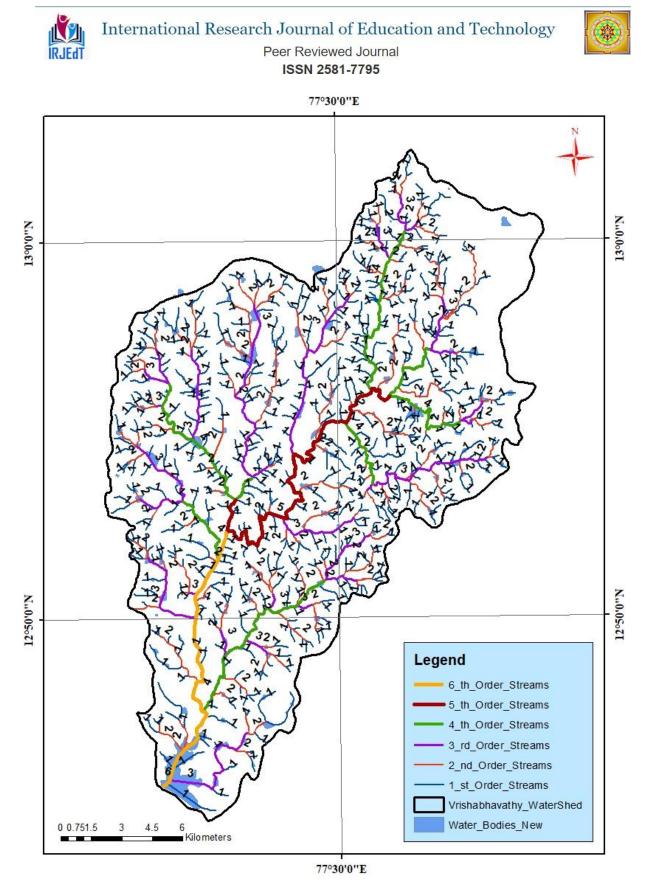
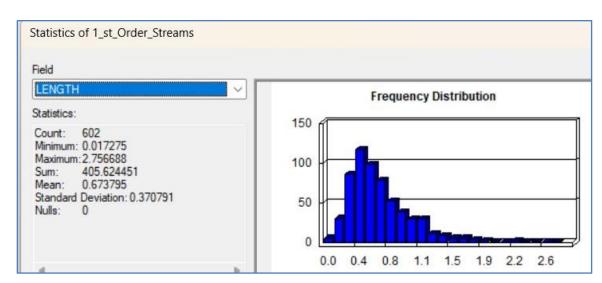
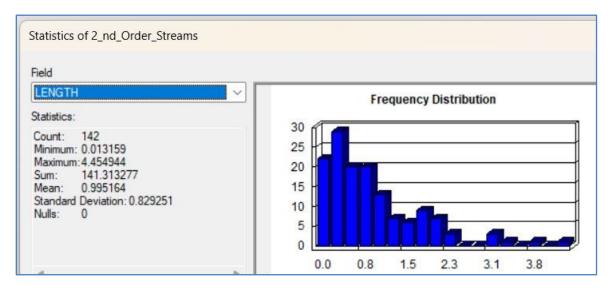


Fig. 11Stream ordering and numbering of vrishabhavathi watershed

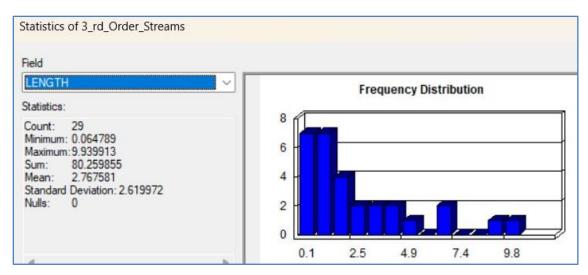


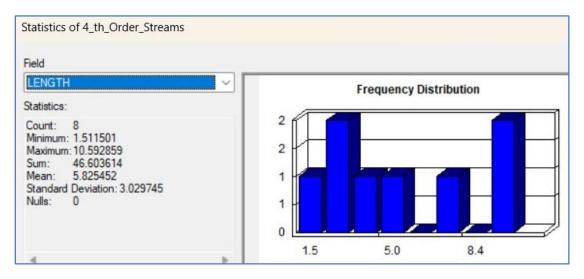
6.7.2 Stream length (Lu) & Mean stream length (Lsm)


The behaviour of surface runoff on the basin is shown by stream length, which is important to the drainage basin system. Longer streams typically indicate a flatter gradient, whereas smaller streams are more typical in regions with steeper slopes and finer textures. First-order streams have the longest total length of stream segments, which is shorter as stream order rises.

Statistics of each order streamsLength

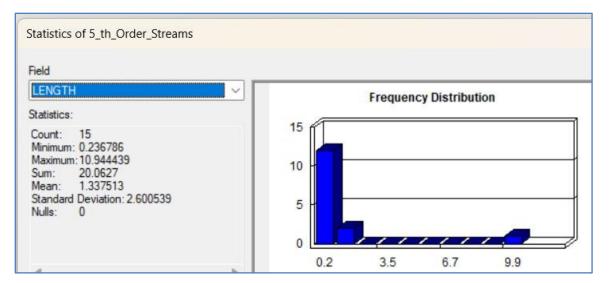
2nd order


1st order

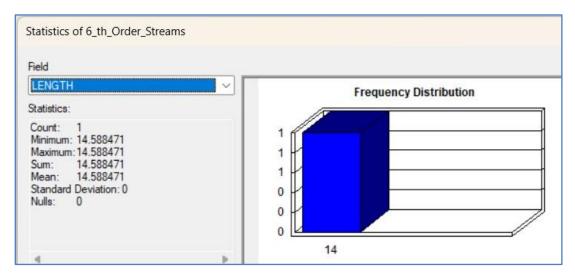


3rd order

4th order



This statistical table displays the total number of streams, the length of each stream in each order, as well as the maximum and minimum stream lengths.



5th order

6th order

6.7.3 Ratio of Stream length (RL)

According to Horton (1945), the stream length ratio is the ratio of the mean stream length of one order to the mean stream length of the next lower order and has a significant impact on the basin's surface flow, discharge, and erosion stage. The result is displayed below:

RATIO OF STREAM LENGTH			
Order of streams	Lu	Lu/Lu-1	
1st order	405.624	-	
2nd order	141.313	0.348	
3rd order	80.259	0.568	
4th order	46.603	0.581	
5th order	20.062	0.430	
6th order	14.588	0.727	
summation (Σ Lu)	708.449		

able 3 STREAM LENGTH RATIC

6.7.4 Ratio of Mean stream length (Σ Lu)

It is calculated by adding the total stream length of order (u) and dividing it by the total stream length of the order below it.

6.7.5 Ratio of Bifurcation (R₁)

A drainage network's branching structure and bifurcation ratio are related. According to Schumm (1956), it is the proportion of all stream segments of one order to those of the next higher order in a drainage basin. In contrast to places where geology is dominant, Strahler (1957) showed that the bifurcation ratio has a narrow range of variation for distinct regions or different environmental situations. It has been seen that Rb changes from one order to the next. The basin as a whole has a mean Rb of 3.87. The natural drainage system within a homogeneous rock is indicated by the bifurcation ratio, which ranges between 3 and 5, according to Kale

and Gupta (2001).Higher values of the bifurcation ratio show strong structural control over the drainage pattern and have well-dissected drainage basins, whereas lower values of the bifurcation ratio are characteristics of the watershed which have flat or rolling watersheds. Less risk of flooding results from a larger bifurcation ratio (Eze & Efiong, 2010).

The calculation is given below:

BIFURCATION RATIO			
Order of streams	Nu	Nu/Nu+1	
1st order	602	4.239	
2nd order	142	4.733	
3rd order	30	3.750	
4th order	8	0.533	
5th order	15	15.000	
6th order	1	-	
summation (Σ Nu)	798		

Table 4 BIFURCATION RATIO

6.7.6 Ratio of mean bifurcations (ΣNu)

It is calculated by adding the total number of stream segments in the specified order and dividing it by the total number of segments in the following higher order.

6.7.7 Channel Sinosity(S)

The proportion of the longest stream length (Rl) to the catchment length(Lb).

S = SI/Lb: 1.351

Sinuosity is the relationship between channel length and valley length. Rivers meander to keep the channel slope in balance with flow and sediment load. On a meandering river, sinuosity is the watershed length to channel length ratio. Any tectonic deformation that alters the slope of a river valley, according to Pinter

(2002), results in a conformal change in sinuosity to preserve the equilibrium channel slope.

Muller (1968) defined channel sinuosity (S) as the product of the ratio of the stream length (Sl) to the valley length (Vl), where S = Sl/Vl. The ratio of the channel length to the valley axis length can be used to determine the waviness index (Brice, 1964). According to Brice (1964), if the sinuosity index of a reach is 1.3 or more, the reach is considered meandering, a straight reach has a sinuosity index of 1, and reaches that have sinuosity indices between 1.05 and 1.3 are considered sinusoidal.

6.8 Surface Aspects

The total area projected onto a horizontal plane that contributes overland flow to a channel segment of the given order is defined as the areal aspects (Au) of a watershed of a particular order u, and this includes all lower-order tributaries. The stream's flow characteristics are significantly influenced by the watershed's structure; for instance, alternating flood flow is typical in an elongated watershed with a high bifurcation ratio. On the other hand, a watershed that is round or circular and has a low bifurcation ratio may experience a sharp peak flood flow. The manner in which runoff and sediment are transported is significantly impacted by the form of the watershed. The rate at which water enters the stream is also influenced by the geometry of the watershed. Shape factor, circularity ratio, and elongation ratio are three metrics that can be used to describe the watershed's quantitative expression.

6.8.1 Form factor (R_f)

Horton defines the shape factor Rf as the dimensionless ratio of the catchment area (A) to the square of the catchment length (L). The shape factor value would always be less than 0.7854 (for a perfect circular basin). A catchment with a higher form

factor is usually circular and has high peak flows for a shorter period of time, while an elongated catchment with lower form factor values has

low peak flows for longer periods of time. For the current study area, the shape factor is 0.339

 A/Lb^2 = basin area divided by the square of the basin length

6.8.2 Ratio of Circularity (R_c)

Ratio of circularity is the ratio of the catchment's surface area to the surface area of a circle with the same catchment's circumference (Miller, 1953). The higher the circularity ratio, the lower the value, which varies from 0.2 to 0.8. The ratio is crucial and reveals the degree of dissection in the research field. The region's young, mature, and old stages of the tributary watershed cycle and the acquired value correspond to its low, medium, and high values, respectively.

 $(4 \times \pi \times 379.710) \div 101.241^{(2)} = 0.46$ is our circulation ratio.

 $4 \pi A/P^2$ = where p is the watershed's perimeter and A is the watershed's area

6.8.3 Ratio of Elongation (R_e)

The ratio between a circle's diameter and maximum length that has the same area as the basin is known as the elongation ratio (Schumn, 1956). More pelvic extension is indicated by a smaller form factor. Peak flows will be higher and last for a shorter time in a catchment with a higher form factor. The peak flow will be flatter and last longer in an elongated basin with a low form factor. The elongation ratio's value ranges from 0.4 to 1, with the smaller number indicating a longer watershed. The elongation ratio is calculated to be 0.657 for this study region. $(2 \times \sqrt{(379.710 \div \pi)}) \div 33.479 = 0.657$

Where Re is the elongation ratio, Lb is the total length of the basin and A is the total area of the basin.

6.8.4 Drainage density (D_d)

Drainage density is a function of climate, lithology, structures, relief history of the region, etc., it can ultimately be used as an indirect indicator to explain those variables, as well as the morphogenesis of landforms. Drainage density is the other component of drainage analysis that provides a better quantitative expression to the dissection and analysis of land forms. One of the key indicators of the linear scale of landform components in stream-eroded topography is drainage density (Dd). It is defined as the sum of all stream lengths divided by the entire watershed area. The drainage density, which is given as km/Sq.km, provides a numerical representation of the watershed's average length of stream channel area. The overland flow's length depends inversely on the drainage density, which gives at least some insight into the basin's drainage effectiveness. Mathematically, drainage density is represented as (Lu/A).

A = Area of watershed (Sq. km), where Lu is the total length of all streams (in km). A geomorphologist or hydrologist can obtain a meaningful numerical measure of runoff potential and landscape dissection from the measurement of drainage density. In areas with little possibility for runoff and high levels of permeability, drainage densities can occasionally be less than 1 kilometre per square kilometre. Densities of above 500 km per square kilometre are frequently observed on severely dissected surfaces. A number of elements interact to affect stream density, according to more thorough research of the processes causing variance in drainage density.Climate, terrain, soil infiltration rate, vegetation, and geology are a few of these variables. The region's wells will have good water potential and better specific capacities because the low value of drainage density impacts more infiltration. Infiltration is lower and surface runoff and permeability, an area's drainage density might also hint at its potential for groundwater. Drainage

density was measured and was found to be 1.866. This led to the conclusion that the area is a much coarser watershed. The low drainage density found in the research area suggests that the subsoil there is either very resistant or highly permeable.

Stream length cumulatively divided by watershed area 708.449/379.710 =1.866

6.8.5 Channel maintenance constant (Cm)

The constant of channel maintenance (Cm) has an inverse relationship to drainage density. It shows how many square kilometres of watershed are needed to support one linear km of canal.

 $Cm = 1/Dd \ 0.536$

It is influenced by the permeability of the rock type, the climatic regime, the flora, the relief, as well as the length of erosion and the climate's history. In regions of near dissection, the channel maintenance constant is quite low.

6.8.6 Stream frequency (F)

By comparing the number of stream segments to the area drained, stream frequency can be expressed. In other terms, stream frequency is equal to the size of the watershed divided by the total number of stream segments. Stream frequency, also known as channel frequency, was first defined by Horton (1932) as the number of stream segments per area. The stream frequency for the current investigation is

 $F = \Sigma Nu/A$ 2.102

Total Number of stream segments/ A = Total watershed area (in square kilometres).

6.8.7 Texture Ratio (T_r)

According to the underlying lithology, infiltration potential, and relief aspect of the terrain, texture ratio is a significant factor in the drainage morphometric studySchumm, 1956). The ratio between the first-order streams and the basin's edge is used to express the texture ratio. In the research area, the texture ratio is 5.946km⁻¹.

- Tr N1/P 5.946
- N1 = No. of 1st Order Streams in Total
- P = Perimeter of basin (Km)

6.8.8 Drainage texture (T)

Climate, rainfall, vegetation, lithology, soil type, infiltration capacity, and stage of development all have an impact on drainage texture, which is a measure of relative channel spacing in a fluvial-dissected landscape (Smith, 1950). The study area's Dd value of 3.921 km/km2 suggests a hilly landscape with a range of steep to extremely steep slopes and varying vegetation covering. Drainage texture is divided into five separate textures by Smith.

T Dd X F 3.921

Where, $D_d = Drainage density$

F = Stream frequency

6.8.9 Length of overland flow (L_g)

According to Horton (1945), the Length of Overland Flow (Lg) is the amount of time that water spends over the land before it is concentrated into the main flow, which affects the hydrologic and physiographic evolution of the drainage basin. Infiltration (exfiltration) and percolation through the soil, both of which vary in time and place, have a considerable impact on l_g (Schmid, 1997). According to

Chitra et al. (2011), the high Lg value shows that the rainwater had to travel a comparatively longer distance before becoming concentrated in stream channels. This research's figure for the overland flow length—0.268 km—indicates reduced distance runoff in the study area.

L g 1/2Dd0.268

Where, Dd = Drainage density

6.9 Relief aspects

When determining the amount of the denudational process occurring inside the watershed, relief aspects are crucial since they show the direction of the water's flow.

6.9.1 Watershed relief (H)

The elevation difference between the farthest point along the water divide line and the watershed's discharge point is known as the watershed relief.

H = (Difference in Elevation of Watershed Outlet) - (Difference in Elevation of Watershed Highest Point)

The contour map that is supplied is used to determine the difference in elevation between the discharge point and the farthest point.

At a height of 962.400 m above mean sea level, watershed forms the highest relief. The lowest relief was obtained at the Byramangala Reservoir at an elevation of 688.306 m above msl. 274.094 m was the total relief determined for the watershed. (0.274 km).

H =Highest RL - Lowest RL

962.4 - 688.306

274.094m

= 0.274 km

6.9.2 Relief ratio (Rh)

According to Schumm (1956), the relief ratio is the ratio of the total watershed relief to the watershed's maximum length. The watershed's relief ratio was calculated to be 0.008. The drainage basin's overall sharpness is increased by the relief ratio, which also serves as a gauge of the process's intensity and watershed's shape.

R_h H / Lb 0.008

Where Rh = Relief ratio

H = Total catchment relief

Lb = Length of watershed (km)

6.9.3 Relative relief (R_r)

The ratio of the highest watershed relief to the watershed's perimeter is known as relative relief. It is calculated using the equation

 $\label{eq:Rr} \begin{array}{|c|c|c|} R_r & H \mspace{.5mm} P & 0.003 \mspace{.5mm} km \\ Rr = H \mspace{.5mm} P & \end{array}$

Where Rr= Relief ratio

Where H = Total catchment relief (km)

P = Perimeter of the watershed (km)

6.9.4 Ruggedness number (Rn)

According to Strahler (1964), The ruggedness number, which typically mixes slope steepness with length, is a result of drainage density and watershed relief. High values of the roughness number are present in the watershed area as a result of

increased drainage density and relief. It is calculated using the equation to be 0.511.

R _N H x Dd	0.511
-----------------------	-------

Where $R_n = Ruggedness$ number,

H = relief of the watershed in kilometers,

 $D_{\rm d}$ is the Drainage density in km/Km²

6.9.5 :Compactness constant (C _c)

The ratio between the basin's area and perimeter is known as the compactness constant. For a perfect circle, the compactness constant is one, and it rises with increasing basin length. As a result, it offers a clear indication of how long the basin is. Compactness constant for our study is 1.466

	0.2821		
Cc	P/A ^{0.5}	1.466	19.4861

Where P = Watershed's perimeter

A = Watershed's area

6.10 : Digital Elevation Model (DEM)

DEM is a digital cartographic dataset that represents a continuous topographic elevation surface through a series of cells. Each cell represents the elevation (Z) of a feature at its location (X and Y). Digital Elevation Models are a "bare earth" representation because they only contain information about the elevation of geological (ground) features, such as valleys, mountains, and landslides, to name a few. They do not include any elevation data concerning non-ground features, such as vegetation or buildings.

Digital Elevation Models could be used to create topographical maps of overland terrain, as well as bathymetric maps, which serve to illustrate underwater terrain.

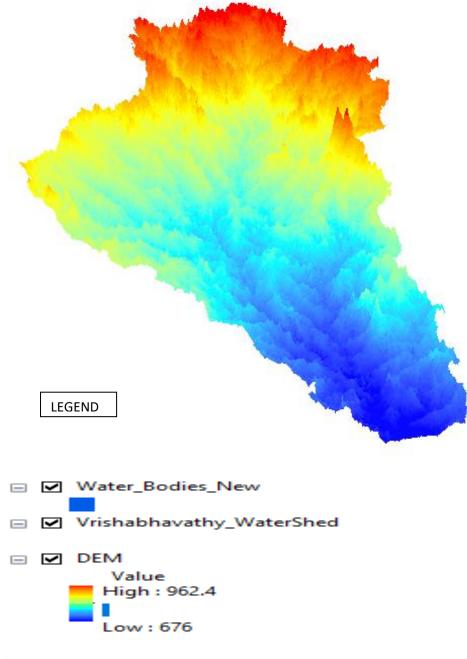


FIG 12: 3D DEM MODEL

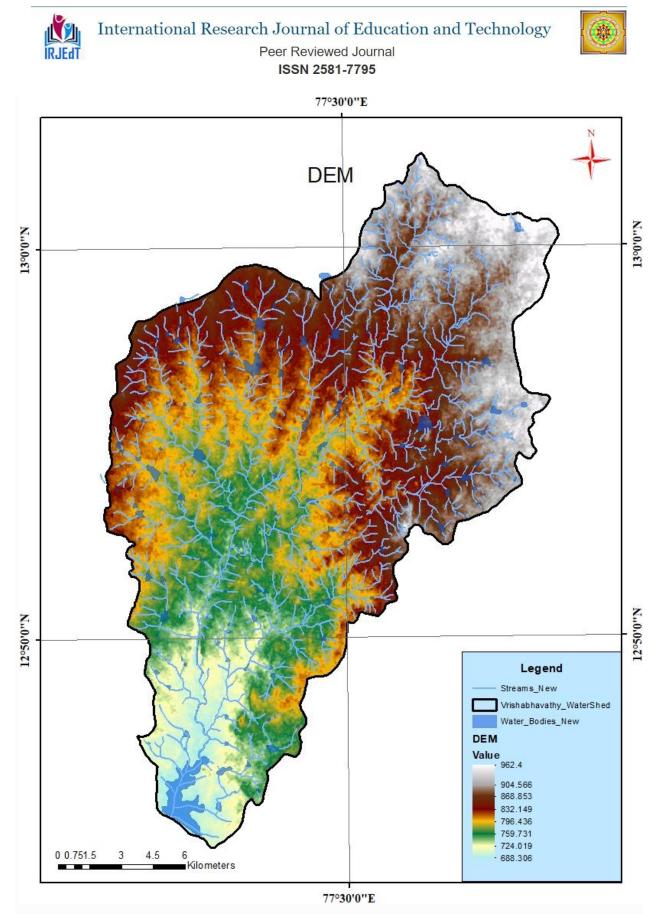


FIG 13: DEM MAP

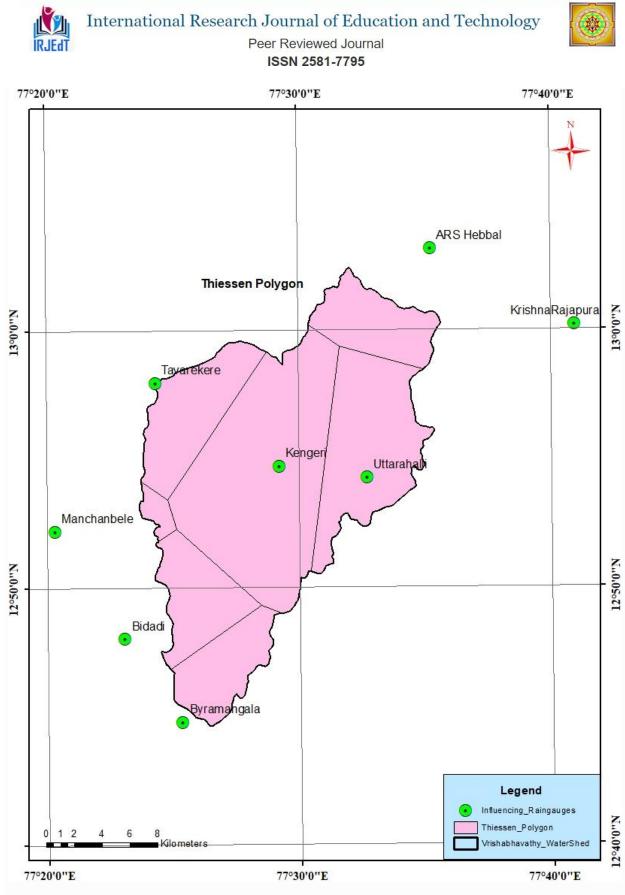


FIG14INFLUENCING RAINGAUGE STATION USING THIESSEN POLYGON

Weightage 0.0875087 8 0.0977589 3 0.0949273 4	0.0875087 8 0.0977589 3 0.0949273 4	8 0.0977589 3 0.0949273 4	0.0977589 3 0.0949273 4	3 0.0949273 4	0.0949273 4	4			0.0148472	0.1227143	5	0.3837502	4	0.1984931	5	263	T
						U	D	5.6410805	1	46.624366	1	145.80293	5	75.415937	5	379.942263	lata imported from arcGis softwarefrom theissen polynon influencing raingenue station
Y 12.7464	12.7464	12.7464			12.8006		13.0523		12.8703		12.9661		12.9119		12.9042		
;	×		77.4222		77.3842		77.5876		77.3386		77.4058		77.4872		77.545		induited i
	L		C-5		C-5		<mark>C-5</mark>		C-5		C-5		с. 2		C-5		ionidoa eo
	Basin		Cauvery		Cauvery		Cauvery		Cauvery		Cauvery		Cauvery		Cauvery		
	Taluk	Ramanagara	ш	Ramanagara	Е				Magadi	Bangalore	south	Bangalore	south	Bangalore	south	TOTAL CATCHMENT AREA	Gio cofficientes
	District		Ramanagar		Ramanagar				Ramanagar	Bangalore	Urban	Bangalore	Urban	Bangalore	Urban	TOTAL CA	ortod from and
	Name		Byramangala		Bidadi		ARS Hebbal	Manchanbel	e		Tavarekere		Kengeri		Uttarahalli		e Data ima
	FID		7		9		∞		5		3		2		4		Table E. D
	Ы		0		0		0		0		0		0		0		
	FID		0		1		2		3		4		2		6		

Table 5: Data imported from arcGis softwarefrom theissen polygon influencing raingauge station

CHAPTER 7 : RUNOFF ESTIMATION USING STRANGE'S TABLE METHOD

7.1 :NEED FOR RUNOFF ESTIMATION

In many activities of water resource development and management, such as a: flood control and its management, irrigation scheduling, design of irrigation and drainage networks, hydropower generation, etc., rainfall-generated runoff is particularly essential. In order to obtain a continuous height record that can be associated to flow, runoff is typically measured in the field using current metres, calibrated or rated channel cross sections, flumes, or standardised weirs, along with readings of the water level, frequently from automatic recorders.

7.2: STRANGE'S TABLES

Strange (1892) studied the available rainfall and runoff in the border areas of present day Maharashtra and Karnataka and has obtained yield ratios as functions of indicators representing catchment characteristics. Catchments are classified as *good, average and bad* according to the relative magnitudes of the yield they give. For example, catchments with good forest / vegetal cover and having soils of high permeability would be classified as bad, while catchments of low permeable soils and having little or no vegetal cover is termed good.

Total Mon-	Total Mon-	P Ru	ercentage 10ff to ral	of nfall	Total Mon-	Total Mon-	Pe * Run	rgentage off to rai	of nfall
soon rainfall (inches)	sòon rainfall (mm)	Good catch- ment	Average catch- ment	Bad entch- ment	soon rainfail (inches)	- soon rainfall (mm)	Góod catch- ment	Average catch- ment	
1.0	25.4	0.1	0.1	0.1	31.0	787.4	27.4	20.5	13.7
2.0	50.8	0.2	0.2	0.1	32.0	812.8	28.5	21.3	14.2
3.0	76.2	0.4	0.3	0.2	33.0	838.2	29.6	22.2	14.8
4.0	101.6	0.7	0.5	0.3	34.0	863.6	30.8	23.1	15.4
5.0	127.0	1.0	0.7	0.5	35.0	889.0	31.9	23.9	15.9
6.0	152.4	1.5	1.1	0.7	36.0	914.4	33.0	24.7	16.5
7.0	177.8	2.1		1.0	37.0	939.8	34.1	25.5	17.0
8.0	203.2	2.8	. 2.1	1.4	38.0	965.2	35.3	26.4	17.6
9.01	228.6	3.5	mi2:601.	19 1.7 c	39.0	990.6	36.4	: 27.3	18.2
10.0	254.0	4.3	3.2	2.1	40.0	1016.0	37.5	28.1	18.7
11.0	279.4	5.2	3.9	2.6	41.0	1'041.4	38.6	28.9	19.3
12.0	304.8	6.2	4.6	3.1	42.0	1066.8	39.8	29.8	19.9
13.0	330.2	7.2	5.4	3.6	43.0	1092.2	40.9	30.6	20.4
14.0	355.6	8.3	6.2	4.1	44.0	1117.6	42.0	31.5	21.0
15.0	381.0	9.4	7.0	4.7	45.0	1143.0	43.1	32.3	21.5
16.0	406.4	10.5	7.8	5.2	46.0	1168.4	44.3	33.2	22.1
17.0	431.8	11.6	8.7	5.8	47.0	1193.8	145.4	34.0	22.7
18.0	457.2	12.8	9.6	6.4	48.0	1219.2	46.5	34.8	23.2
19.0	482.6	13.9	10.4	6.9	49.0	1244.6	47.6	35.7	23.8
20.0	508.0	15.0	11.3	7.5	50.0	1270.0	48.8	36.6	24.4
COLD STRUCK	533.4	16.1	12.0	8.0	51.0	1295.4	49.9	37.4	24.9
22.0	558.8	17.3	12.9	8.6	52.0	1320.8	51.0	38.2	25.5
23.0	584.2	18.4	13.8	9.2	53.0	1346.2	52.1	39.0	26.0
24.0	609.6	19.5	14.6	9.7	54.0	1371.6	53.3	39.9	26.6
25.0	635.0	20.6	15.4	10.3	55.0	1397.0	54.4	40.8	27.2
26.0	660.4	21.8	16.3	10.9	56.0	1422.4	55.5	41.6	27.7
27.0		/ /	a special second s	11.4	57.0	1447.8	56.6	42.4	28.3
28.0	685.8	22.9	17.1		58.0	1473.2	57.8	43.3	28.9
The selection of all	711.2	24.0	18.0	12.0	59.0	1498.6	58.9	44.4	29.41
20.0	736.6	25.1	18.8	12.5	a contration	1524.0	.60.0	45.0	30.0
30.0	762.0	26.3	19.7	13.1	60.0	1524.0	,00.0		50.0

Table 5.3(a) Strange's Table of Total Monsoon Rainfall and estimated Runoff

Table 5 STRANGE'S TABLE

Total		415.735	568.462	529.273	683.191	468.587	445.266	639.836	405.253	808.102	591.708	439.865	828.279	605.012	650.697	459.188	573.125	697.343	623.036	795.618	539.594	627.294	518.905	455.549	419.546	616.336	729.128	405.894	529.215	635.555	567.950	472.716	671.746	323.346	604.551	694.342	673,984	764.105	933.525	599.867	750.599	1002.370
Wt	0.095	39.490	43.970	60.269	51.394	58.646	34.952	58.732	30.652	75.031	73.350	30.756	106.746	64.095	90.039	62.624	70.892	78.828	99,883	72.335	66.724	74.556	60.488	28.355	44.958	58.029	84.523	27.443	67.987	68.452	50.872	52.257	64.598	31.013	72.866	73.948	41.104	75.144	84.789	57.355	76.549	103.395
Area	ARS Hebbala	416	463.2	634.9	541.4	617.8	368.2	618.7	322.9	790.4	772.7	324	1124.5	675.2	948.5	659.7	746.8	830.4	1052.2	762.0	702.9	785.4	637.2	298.7	473.6	611.3	890.4	289.1	716.2	721.1	535.9	550.5	680.5	326.7	767.6	779.0	433.0	791.6	893.2	604.2	806.4	1089.2
Wt	0.198	64.074	90.374	79.854	64.629	72.688	138,469	68.599	73.681	106.432	118.361	130.668	109.886	97.381	73.284	62.228	68.718	81.620	108.417	89.560	85.590	84.320	91.704	170.009	113.002	60.044	73.343	51.469	76.460	111.791	82.017	81.938	156.016	62.128	121.279	121.776	101.430	208.180	223.543	113.578	107.583	155.619
Area	Uttarhalli	322.8	455.3	402.3	325.6	366.2	697.6	345.6	371.2	536.2	596.3	658.3	553.6	490.6	369.2	313.5	346.2	411.2	546.2	451.2	431.2	424.8	462	856.5	569.3	302.5	369.5	259.3	385.2	563.2	413.2	412.8	786	313	611	613.5	511	1048.8	1126.2	572.2	542	784
Wt	0.123	43.834	69.113	60.044	44.128	45.306	48.043	53.528	39.465	44.828	25.316	46.914	129.881	80.317	98.441	57.602	55.995	58.719	80.292	31.452	61.517	70.966	43.711	39.195	49.270	56.363	43.465	43.711	60.891	51.638	58.314	52.338	69.469	48.227	63.517	95.840	95.840	33.513	112.971	61.627	78.844	102.957
Area	Tavarekere	357.2	563.2	489.3	359.6	369.2	391.5	436.2	321.6	365.3	206.3	382.3	1058.4	654.5	802.2	469.4	456.3	478.5	654.3	256.3	501.3	578.3	356.2	319.4	401.5	459.3	354.2	356.2	496.2	420.8	475.2	426.5	566.1	393	517.6	781	781	273.1	920.6	502.2	642.5	839
Wt	0	8.807	11.801	7.611	11.066	10.014	11.034	9.003	8.451	13.091	13.449	8.453	12.366	15.088	11.648	12.473	9.698	8.660	13.875	16.175	11.608	12.867	13.248	11.181	12.415	8.980	12.430	14.301	7.663	9.011	7.859	12.816	13.968	9.787	10.724	13.306	12.080	11.732	11.792	9.213	11.906	12.013
Area	Manchanbele	593.2	794.8	512.6	745.3	674.5	743.2	606.4	569.2	881.7	905.8	569.3	832.9	1016.2	784.5	840.1	653.2	583.3	934.5	1089.4	781.8	866.6	892.3	753.1	836.2	604.8	837.2	963.2	516.1	606.9	529.3	863.2	940.8	659.2	722.3	896.2	813.6	790.2	794.2	620.5	801.9	809.1
Wt	0.384	174.146	231.747	244.449	370.319	160.408	132.010	354.508	175.067	408.272	242.300	147.705	340.847	245.523	285.587	174.721	257.496	348.906	174.223	428.649	172.074	193.448	210.948	145.556	108.141	309.379	335.628	164.322	246.905	273.384	251.779	166.394	256.998	70.687	223.151	281.366	307.000	322.734	368.016	239.307	350.402	505.783
Area	Kengeri	453.8	603.9	637	965	418	344	923.8	456.2	1063.9	631.4	384.9	888.2	639.8	744.2	455.3	671	909.2	454	1117	448.4	504.1	549.7	379.3	281.8	806.2	874.6	428.2	643.4	712.4	656.1	433.6	669.7	184.2	581.5	733.2	800	841	959	623.6	913.1	1318
Wt	0.088	40.875	57.406	38.539	64.074	55.411	35.809	62.481	47.622	71.048	54.684	28.405	82.626	57.913	48.480	40.875	53.538	60.714	65.002	74.137	68.782	91.893	56.067	28.073	45.540	56.811	84.726	46.100	43.238	61.685	59.970	51.123	59.707	34.461	62.227	64.476	66.752	71.127	60.845	63.173	73.805	68.904
Area	Byramangala	467.1	656	440.4	732.2	633.2	409.2	714	544.2	811.9	624.9	324.6	944.2	661.8	554	467.1	611.8	693.8	742.8	847.2	786	1050.1	640.7	320.8	520.4	649.2	968.2	526.8	494.1	704.9	685.3	584.2	682.3	393.8	711.1	736.8	762.8	812.8	695.3	721.9	843.4	787.4
Wt	0.098	44.510	64.052	38.507	77.581	66.114	44.950	32.984	30.315	89.401	64.247	46.963	45.927	44.695	43.219	48.664	56.788	59.897	81.345	83.310	73.300	99.245	42.740	33.179	46.220	66.730	95.012	58.548	26.072	59.594	57.140	55.850	50.991	67.043	50.786	43.630	49.779	41.675	71.569	55.615	51.509	53.699
Area	Bidadi	455.3	655.2	393.9	793.6	676.3	459,8	337.4	310.1	914.5	657.2	480.4	469.8	457.2	442.1	497.8	580.9	612.7	832.1	852.2	749.8	1015.2	437.2	339.4	472.8	682.6	971.9	598.9	266.7	609.6	584.5	571.3	521.6	685.8	519.5	446.3	509.2	426.3	732.1	568.9	526.9	549.3
	Year	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020

D'
d V)h
IKJEDI

Total		1002.370	933.525	828.279	808.102	795.618	764,105	750.599	729.128	697.343	694.342	683.191	673,984	671.746	650.697	639.836	635.555	627.294	623.036	616.336	605.012	604.551	599.867	591.708	573.125	568.462	567.950	539.594	529.273	529.215	518.905	472.716	468.587	459.188	455.549	445.266	439.865	419.546	415.735	405.894	
Wt	0.095	103.395	84.789	106.746	75.031	72.335	75.144	76.549	84.523	78.828	73.948	51.394	41.104	64.598	90.039	58.732	68.452	74.556	99,883	58.029	64.095	72.866	57.355	73.350	70.892	43.970	50.872	66.724	60.269	67.987	60.488	52.257	58.646	62.624	28.355	34.952	30.756	44,958	39.490	27.443	
Area	ARS Hebbala	1089.2	893.2	1124.5	790.4	762.0	791.6	806.4	890.4	830.4	779.0	541.4	433.0	680.5	948.5	618.7	721.1	785.4	1052.2	611.3	675.2	767.6	604.2	772.7	746.8	463.2	535.9	702.9	634.9	716.2	637.2	550.5	617.8	659.7	298.7	368.2	324	473.6	416	289.1	2020
Wt	0.198	155.619	223.543	109.886	106.432	89.560	208.180	107.583	73.343	81.620	121.776	64.629	101.430	156.016	73.284	68.599	111.791	84.320	108.417	60.044	97.381	121.279	113.578	118.361	68.718	90.374	82.017	85.590	79.854	76.460	91.704	81.938	72.688	62.228	170.009	138.469	130.668	113.002	64.074	51.469	
Area	Uttarhalli	784	1126.2	553.6	536.2	451.2	1048.8	542	369.5	411.2	613.5	325.6	511	786	369.2	345.6	563.2	424.8	546.2	302.5	490.6	611	572.2	596.3	346.2	455.3	413.2	431.2	402.3	385.2	462	412.8	366.2	313.5	856.5	697.6	658.3	569.3	322.8	259.3	
W	0.123	102.957	112.971	129.881	44.828	31.452	33.513	78.844	43.465	58.719	95,840	44.128	95.840	69.469	98.441	53.528	51.638	70.966	80.292	56.363	80.317	63.517	61.627	25.316	55.995	69.113	58.314	61.517	60.044	60.891	43.711	52.338	45.306	57.602	39.195	48.043	46.914	49.270	43.834	43.711	
Area	Tavarekere	839	920.6	1058.4	365.3	256.3	273.1	642.5	354.2	478.5	781	359.6	781	566.1	802.2	436.2	420.8	578.3	654.3	459.3	654.5	517.6	502.2	206.3	456.3	563.2	475.2	501.3	489.3	496.2	356.2	426.5	369.2	469.4	319.4	391.5	382.3	401.5	357.2	356.2	
Wt	0.015	12.013	11.792	12.366	13.091	16.175	11.732	11.906	12.430	8.660	13.306	11.066	12,080	13.968	11.648	9.003	9.011	12,867	13.875	8.980	15.088	10.724	9.213	13.449	9.698	11,801	7.859	11.608	7.611	7.663	13.248	12.816	10.014	12.473	11.181	11.034	8.453	12.415	8.807	14.301	
Area	Manchanbele	1.908	794.2	832.9	881.7	1089.4	790.2	801.9	837.2	583.3	896.2	745.3	813.6	940.8	784.5	606.4	606.9	866.6	934.5	604.8	1016.2	722.3	620.5	905.8	653.2	794.8	529.3	781.8	512.6	516.1	892.3	863.2	674.5	840.1	753.1	743.2	569.3	836.2	593.2	963.2	
Wt	0.384	505.783	368.016	340.847	408.272	428.649	322.734	350.402	335.628	348.906	281.366	370.319	307.000	256.998	285.587	354.508	273.384	193.448	174.223	309.379	245.523	223.151	239.307	242.300	257.496	231.747	251.779	172.074	244.449	246.905	210.948	166.394	160.408	174.721	145.556	132.010	147.705	108.141	174.146	164.322	
Area	Kengeri	1318	959	888.2	1063.9	1117	841	913.1	874.6	5.909.2	733.2	965	800	669.7	744.2	923.8	712.4	504.1	454	806.2	639.8	581.5	623.6	631.4	671	603.9	656.1	448.4	637	643.4	549.7	433.6	418	455.3	379.3	344	384.9	281.8	453.8	428.2	4 1 1 1 1
Wt	0.088	68.904	60.845	82.626	71.048	74.137	71.127	73.805	84.726	60.714	64.476	64.074	66.752	59.707	48.480	62.481	61.685	91.893	65.002	56.811	57.913	62.227	63.173	54.684	53.538	57.406	59.970	68.782	38.539	43.238	56.067	51.123	55.411	40.875	28.073	35.809	28,405	45,540	40.875	46.100	
Area	Byramangala	787.4	695.3	944.2	811.9	847.2	812.8	843.4	968.2	693.8	736.8	732.2	762.8	682.3	554	714	704.9	1050.1	742.8	649.2	661.8	711.1	721.9	624.9	611.8	656	685.3	786	440.4	494.1	640.7	584.2	633.2	467.1	320.8	409.2	324.6	520.4	467.1	526.8	
Wt	0.098	53.699	71.569	45.927	89.401	83.310	41.675	51.509	95.012	59.897	43.630	77.581	49.779	50.991	43.219	32.984	59.594	99.245	81.345	66.730	44.695	50.786	55.615	64.247	56.788	64.052	57.140	73.300	38.507	26.072	42.740	55.850	66.114	48.664	33.179	44.950	46.963	46.220	44.510	58.548	
Area	Bidadi	549.3	732.1	469.8	914.5	852.2	426.3	526.9	971.9	612.7	446.3	793.6	509.2	521.6	442.1	337.4	9.609	1015.2	832.1	682.6	457.2	519.5	568.9	657.2	580.9	655.2	584.5	749.8	393.9	266.7	437.2	571.3	676.3	497.8	339.4	459.8	480.4	472.8	455.3	598.9	
	Year	2020	2017	1991	1988	1998	2016	2019	2005	1996	2014	1983	2015	2011	1993	1986	2008	2000	1997	2004	1992	2013	2018	1989	1995	1981	2009	1999	1982	2007	2001	2010	1984	1994	2002	1985	1990	2003	1980	2006	1007

Table 8 Yearly Rainfall data in descending order for 50% dependable year from different raingauge stations

From Strange's Tables for good catchment

584.2 – 18.4 604.551 - x 609.6 – 19.5 By interpolation, x = 19.28 %

Year 2013 is 50% dependable area

 $604.551 \ge 19.28\% = 116.557 / 10^3 = 0.1165$

Total catchment area = 379.9423 km² (from Theissen polygon)

 $= 379942300 \text{ m}^2 \text{ x } 0.1165$

Volume = 44263277.95 m³

Runoff = $44263277.95 \text{ m}^3 / 10^6$

= 44.263 Mm³ (million meter cube)

CHAPTER 8 CONCLUSION

The delineation of watersheds uses automated GIS watershed tools. The application potential of DEM to several hydrologic, hydraulic, and water resources has significantly increased as a result of GIS's technological advancements and the growing availability and quality of DEM. Increased efficiency is offered by GIS ArcHydro; a typical hydrographical analysis was carried out both using GIS and conventional methods. Efficiency in a hydrographical study largely refers to reducing the cost of data acquisition and the amount of time needed to complete the analysis. These findings can be efficiently used to watershed studies, hydrological modelling, land use planning, and reservoir operation and planning. This study demonstrates the capability of GIS-based spatial interpolation technique

for developing sustainable land-use system on watershed basis. There are enough opportunities for diversification of the rainfed upland area with short duration field crops and vegetables for higher land productivity and water productivity.

We have used arcGIS software for georeferencing of toposheets, digitizing streams of watershed for calculating morphometric parameters, for extracting DEM (Digital Elevation Model), influencing rainguage stations and Theissan Polygon.

For 44.263Mm³ runoff 44262999999.99 litres serves 3278704.074 population

REFERENCES

- 1. Ajey Kumar V G et al., November 2019, 'Rainfall Analysis of Vrishabhavathi Valley inBengaluruRegion'.InternationalJournalofRecentTechnologyandEngi neering(IJRTE),Volume-8Issue-4,PP-9288-9290.
- 2. AravindaPT, BalakrishnaH B, Morphometric Analysis of Vrishabhavathi watershed using Remote Sensing and GIS, International Journal of Research in Engineering and Technology.Vol 2 PP- 2321-7308
- 3. Gos K, Rao S et al., (2004) GIS-based technologies for watershed management, volume 87, International Journal of Water Management Modeling PP -948-952
- Kar G, Patra PK, et al., (2021) Land resources evaluation and drainage network analysis of watershed for site specific crop planning using GIS, Vol 121, International research journal of engineering and technology, PP-1470-1478
- 5. Kiran Kumar, K.M, Govindaiah, S, Nagabhushan, P, et al., (2018)Morphometric Analysis of the Tumkur-GubbiWatershedofShimsha River Basin, Karnataka, India,by using Remote Sensing and GIS Techniques, International Journal of Creative Research Thoughts (IJCRT), vol 6, PP-1628-1640
- L John et al., (2016)Integrated watershed management evolution, development and emerging trends, vol 10,International Journal of Water Management Modeling ,vol 27, PP-944-967

- M.Latha and M.Rajendran, et al., (2015) An Empirical Approach to Estimate Runoff of an Unguaged Catchment- Strange Table Method, International Journal of Research in Advent Technology, Vol.3 PP-125-128
- 8. N Mangrule and J Um. Kahalekar, et al., (2013)Watershed Planning and Development Plan by Using Rs and GIS of KhultabadTaluka of Aurangabad District, volume 3.International journal of water resources development. Pp-1094-1100
- 9. PandeyA, Behra RP. Pandey and Singh RP et al.,(2011), Application of GIS for Watershed Prioritization and Management A Case Study, International Journal of Water Management Modeling ,Vol 2, PP -26-42
- 10.Setyawan C, Susanto S and Lee SS et al., (2019) Spatial modelling of watershed health assessment by using GIS, International research journal of engineering and technology ,Vol 355, PP- 1038-1315
- 11.Suthar VK, Bhoite RR, Mane AB, Mandhare AJ, Salvi SS et al., (2022) Watershed Management of PurandarTaluka by Remote Sensing and GIS, International Journal For Research in Applied Science and Engineering Technology. PP 0022-1945
- 12.Sandeep A et al.,(2020) Morphometric Analysis of a Drainage Basin: A Study of Ghatganga River, Bajhang District, Nepal, The Geographic Base Vol. 7: 127-144